§4. Операции над предикатами

Рассматриваемые вопросы
1.
Понятие предиката. Область определения предиката.
2.
Одноместный предикат. Многоместный предикат.
3.
Логические операции над предикатами.

Понятие предиката

Выразительные возможности языка логики высказываний очень
ограничены. С ее помощью невозможно проанализировать
внутреннюю структуру даже очень простых рассуждений.
Пример: есть два умозаключения.
Любой человек смертен, Сократ - человек, следовательно, Сократ
смертен.
Крокодилы не летают, Луна - головка швейцарского сыра,
следовательно, сборная России выиграет чемпионат мира по футболу.
X Y Z.
Расширение
логики
высказываний
называется логикой предикатов

Понятие предиката

Первое высказывание представляется строгим логическим выводом,
второе же не соответствует никакому здравому смыслу.
Эти примеры подтверждают тезис о том, что в логике высказываний не
рассматривается внутреннее содержание простейших высказываний
(атомарных формул).
Не имеется
высказывания.
возможности
«влезть»
внутрь
элементарного
Расширение логики высказываний называется логикой предикатов.

Понятие предиката

В высказывании все четко: это - конкретное утверждение о
конкретных объектах - истинное или ложное.
Предикат - предложение, похожее на высказывание, но все же им не
являющееся: о нем нельзя судить, истинно оно или ложно.

Понятие предиката

Логика предикатов, как и традиционная формальная логика,
расчленяет
элементарное
высказывание
на
субъект
(подлежащее, хотя оно может играть и роль дополнения) и
предикат (сказуемое, хотя оно может играть и роль
определения).
Субъект – это то, о чем что-то утверждается в высказывании
Предикат – это то, что утверждается о субъекте
Например, в высказывании “7 - простое число”, “7” – субъект,
“простое число” – предикат.
Это высказывание утверждает, что “7” обладает свойством
“быть простым числом”.

Понятие предиката

ПРИМЕР “7 - простое число”
Если в рассмотренном примере заменить конкретное число 7
переменной х из множества натуральных чисел, то получим
высказывательную форму:
“х – простое число”
При одних значения х (например, х=13, х=17) эта форма дает
истинные высказывания, а при других значениях х (например,
х=10, х=18) эта форма дает ложные высказывания.
Эта высказывательная форма определяет функцию одной
переменной х, определенной на множестве N, и принимающую
значения из множества {1;0}.
Здесь предикат становится функцией субъекта и выражает
свойство субъекта.

Понятие предиката

В естественной речи часто встречаются сложные высказывания,
истинность которых может изменяться при изменении объектов,
о которых идет речь, хотя форма самого высказывания остается
прежней.
Например:
«У кошки четыре ноги» - истинно,
«У слона четыре ноги» - истинно,
«У человека четыре ноги» - ложно.
Все эти высказывания имеют одну форму:
«У субъекта х четыре ноги».

Понятие предиката

Таким образом, раздел математической логики, изучающий логические
законы, общие для любой области объектов исследования
(содержащей хоть один объект) с заданными на этих объектах
предикатами (т. е. свойствами и отношениями) называется ЛОГИКОЙ
ПРЕДИКАТОВ
Объект – некоторая часть окружающего нас мира, которая может быть
рассмотрена как единое целое
Субъект – (в логике) подлежащее суждения, то есть предмет, о
котором что-либо говорится или мыслится
Переменное высказывание, истинностное значение которого зависит
от параметра, и называется предикатом.
Предикат от лат. Praedicatum – сказанное. Таким образом, предикат
есть функция, определенная на некотором множестве параметров и
со значениями в {0, 1}.

Понятие предиката

Определение 1. Одноместным предикатом Р(х) называется такая функция
одной переменной, в которой аргумент х пробегает значения из некоторого
множества М, а функция при этом принимает одно из двух значений: истина
или ложь.
Само множество М называется предметным множеством, а аргументы
x1,...,xn M - предметными переменными.
Множество М, на котором задан предикат, называется областью определения
предиката.
Множество, на котором предикат принимает только истинные значения,
называется областью истинности предиката Р(х).
Определение 2. N-местным предикатом называется такая функция n
переменных Q(x1, x2, …,xn), определенная на множестве М=М1 М2 … Мn
и принимающая на этом множестве одно из двух значений: истина или ложь.
Можно считать, что высказывание это нульместный предикат, то есть
предикат, в котором нет переменных для замены.

10. Понятие предиката. Примеры

Пример 1
Пусть предметное множество М есть класс млекопитающих.
Рассмотрим одноместный предикат Р(х):
«У х четыре ноги».
Тогда Р(слон) = 1,
Р(кошка) = 1,
Р(человек) =0.
Пример 2
Пусть М - множество натуральных чисел.
Рассмотрим двухместный предикат G(x,y): х<у.
Тогда, например, G(l,3) = l,
G(8,5) = 0.

11. Классификация предикатов

Предикат называется:
А) Тождественно истинным, если значение его для любых
аргументов есть «истина»
Предикат “x+y=y+x” является тождественно истинным.
Б) Тождественно ложным, если значение его для любых
аргументов есть «ложь»
Предикат “x+1=x” – тождественно ложным.
В) Выполнимым, если существует, по крайней мере, одна nсистема его аргументов, для которой значение предиката есть
«истина».
Предикат “x+y=5” – выполнимым.

12. Равносильность предикатов

Два n-местных предиката Р(х1, х2, ..., хn) и Q(x1, x2, ..., хn),
заданных над одними и теми же множествами М1, М2, …, Мn,
называются равносильными, если набор предметов (элементов)
а1 М1, а2 М2, .., an Мn превращает первый предикат в
истинное высказывание Р(а1, а2, …, аn) в том и только в том
случае, когда этот набор предметов превращает второй предикат
в истинное высказывание Q(а1, а2, …, аn).
Предикаты Р(х1, х2, ..., хn) и Q(х1, х2, ..., хn) равносильны тогда
и только тогда, когда их множества истинности совпадают
Р+ = Q+.
Переход от одного равносильного предиката к другому
называется равносильным преобразованием первого

13. Пример

Пусть требуется решить
уравнение (найти множество
истинности предиката):
4х-2=-3х-9
Преобразуем его равносильным образом:
4х-2=-3х-9 4х+3х=-9 + 2 x = -1.
Ответ:{-1} - множество всех решений данного уравнения
(множество истинности данного предиката).

14. Следование предикатов

Предикат Q(х1, х2, ..., хn), заданный над множествами М1, М2,
…, Мn, называется следствием предиката Р(х1, х2, ..., хn),
заданного над теми же множествами, если он превращается в
истинное высказывание на всех тех наборах значений
предметных переменных из соответствующих множеств, на
которых в истинное высказывание превращается предикат Р(х1,
х2, ..., хn).
Предикат Q является следствием предиката Р тогда и только
тогда, когда Р + Q +.
Обозначается P Q

15. Пример

Одноместный предикат, определенный на
множестве
натуральных чисел, «n делится на 3» является следствием
одноместного предиката, определенного на том же множестве,
«n делится на 6».
Из двух предикатов первый будет следствием второго, если
считать, что оба предиката заданы на множестве Z целых чисел.

16. Упражнение 1.

Среди следующих предложений выделите предикаты:
1) Луна есть спутник Венеры
2) Планеты х и y принадлежат Солнечной системе
3) 5 5 70 6 10 150
2
4) x 3x 2 0
4
x
3x 8
5)
6) Любое простое число не имеет делителей, отличных от себя и 1
7) Натуральное число n не меньше 1
8) Треугольник АВС равен треугольнику А1В1С1
9) x 2 2 x 1 0
1
10) 1 tg 2 x
cos 2 x
11) ln x sin x
Ответ: 2); 4); 7)-11)

17.

Упражнение 2.
Среди следующих предложений выделить предикаты и для каждого из
них указать область истинности.
1) x+5=1
2) При х=2 выполняется равенство х2-1=0
3) х2-2x+1=0
4) Существует такое число х, что х2-2x+1=0
5) x+2<3x-4
6) Однозначное число x кратно 3
7) (x+2)-(3x-4)
1)
2)
3)
4)
5)
6)
7)
Одноместный предикат P(x), Ip=-4
Ложное высказывание. Не предикат
Одноместный предикат P(x), Ip=1
Истинное высказывание. Не предикат
Одноместный предикат P(x), Ip=(3;+)
Одноместный предикат P(x), Ip=(0;3;6;9)
Не предикат

18. Логические операции над предикатами

Отрицанием предиката P(x) называется новый предикат,
множество истинности которого является дополнением
множества истинности предиката Р(х), то есть:
I p CI p
Пример. Предикат P(x) - «x<3»
Отрицание предиката – «x>3»

19. Логические операции над предикатами

Конъюнкцией предикатов P(x) и Q(x) называется новый

значениях, при которых каждый из предикатов P(x) и Q(x)

Множество истинности есть пересечение множеств истинности
I P Q I p I q
Пример. Предикаты P(x) - «x>-3» и Q(x) – «x<3»
Конъюнкция предикатов – «(x>-3) Λ (x<3)»

20. Логические операции над предикатами

Дизъюнкцией предикатов P(x) и Q(x) называется новый
предикат, который принимает значение 1 при тех и только тех
значениях, при которых хотя бы один из предикатов P(x) и Q(x)
принимает значение 1 и принимает 0 во всех остальных случаях.

I P Q I p I q
Пример. Предикаты P(x) - «x≠0» и Q(x) – «y ≠0»
Дизъюнкция предикатов – «(x ≠0) v (y ≠0)»

21. Логические операции над предикатами

Импликацией предикатов P(x) и Q(x) называется предикат,
который имеет значение ложь на тех и только на тех наборах
аргументов х, на которых P(x) имеет значение 1, а Q(x) –
значение 0.
Множество истинности есть объединение множеств истинности
I P Q CI p I q
Пример. Предикаты P(x) - «Натуральное число х делится на 3».
Q(x) – «Натуральное число х делится на 4»
Импликация предикатов – «Если натуральное число х
делится на 3, то оно делится и на 4»

22. Логические операции над предикатами

Эквиваленцией P(x) и Q(x) называется предикат, который имеет
значение истина на тех и только на тех наборах аргументов х, на
которых значения истинности P(x) и Q(x) совпадают.
Множество истинности есть объединение множеств истинности
I P Q (CI p CI q) (I p I q)

23.

Упражнение 3.
Пусть даны предикаты P(x): «х – четное число» и Q(x): «х кратно 3»,
определенные на множестве N. Найти области истинности
предикатов:
1) P(x) Λ Q(x)
2) P(x) v Q(x)
3) ¬P(x)
4) P(x) -> Q(x)
Ip = {2,4,6,8,10,12,…2n,…}, Iq= { 3,6,9,12,...3n,…}
1)
2)
3)
4)
{6,12,…6n,…}
{2,3,4,6,…2n,3n,…}
{1,3,5,…2n-1,…}
{1,3,5,…2n-1,…} v {3,6,9,…3n,…}

24.

Упражнение 4.
Если значения x,y принадлежат отрезку , то в списке
выражений следующего вида:
1) х=2 или y=7
2) x-y=7
3) x+y<2
4) x 2 5 0
5) 3 6) x>12
Число истинных и ложных предикатов соответственно равно:
А) 2,4
Б) 1,4
В) 3,3
Г) 1,5
Д) 2,3
ОТВЕТ Г) 1,5

25.

Упражнение 5.
Запишите предикат (условие, которое может быть и сложным),
полностью описывающий область, нестрого заключенную между
окружностью с центром в начале координат и радиусом 2 и
квадратом, в который вписана эта окружность.
Уравнение окружности имеет вид: x 2 y 2 4
Уравнения квадрата: x 2
y 2
Искомая область образуется пересечением внешней области
окружности, и внутренней области квадрата
Таким образом, ответ: (x 2 y 2 4) & (x 2) & (y 2)

26.

Самостоятельно
Для более подробного изучения материала
самостоятельно читаем:
УЧЕБНИК: «Математическая логика и теория
алгоритмов»,
автор Игошин В.И.
Страницы 146-156

Предикаты так же, как высказывания, могут принимать два значения: “истина” (1) и “ложь” (0), поэтому к ним применимы все операции логики высказываний, в результате чего из элементарных предикатов формируются сложные предикаты (как и в логике высказываний, где из элементарных высказываний формировались сложные, составные). Рассмотрим применение операций логики высказываний к предикатам на примерах одноместных предикатов. Эти операции в логике предикатов сохраняют тот же смысл, который был им присвоен в логике высказываний.

Пусть на некотором множестве M определены два предиката P(x) и Q(x).

Определение 1.

Конъюнкцией двух предикатов P(x) и Q(x) называется новый (сложный) предикат , который принимает значение “истина” при тех и только тех значениях , при которых каждый из предикатов принимает значение “истина”, и принимает значение “ложь” во всех остальных случаях.

Очевидно, что областью истинности предиката является общая часть области истинности предикатов P(x) и Q(x), т.е. пересечение .

Так, например, для предикатов P(x): “x – четное число” и Q(x): “x кратно 3” конъюнкцией является предикат “x – четное число и x кратно трем”, т.е. предикат “x делится на 6”.

Определение 2.

Дизъюнкцией двух предикатов P(x) и Q(x) называется новый предикат , который принимает значение “ложь” при тех и только тех значениях , при которых каждый из предикатов принимает значение “ложь”, и принимает значение “истина” во всех остальных случаях.

Ясно, что областью истинности предиката является объединение области истинности предикатов P(x) и Q(x), т.е. .

Определение 3.

Отрицанием предиката P(x) называется новый предикат или , который принимает значение “истина” при всех значениях , при которых предикат P(x) принимает значение “ложь”, и принимает значение “ложь” при тех значениях , при которых предикат P(x) принимает значение “истина”.

Очевидно, что , т.е. множество истинности предиката является дополнением к множеству I P .

Определение 4.

Импликацией предикатов P(x) и Q(x) называется новый предикат , который является ложным при тех и только тех значениях , при которых одновременно P(x) принимает значение “истина”, а Q(x) – значение “ложь”, и принимает значение “истина” во всех остальных случаях.

Поскольку при каждом фиксированном справедлива равносильность , то .

Определение 5.

Эквиваленцией предикатов P(x) и Q(x) называется новый предикат , который обращается в “истину” при всех тех и только тех , при которых P(x) и Q(x) обращаются оба в истинные или оба в ложные высказывания.

Для его множества истинности имеем:

Кванторные операции.

Рассмотрим операции, преобразующие предикаты в высказывания.

Пусть имеется предикат Р(х) определенный на множестве М. Если “а” – некоторый элемент из множества М, то подстановка его вместо х в предикат Р(х) превращает этот предикат в высказывание Р(а). Такое высказывание называют единичным . Например, r(x): “х – четное число” – предикат, а r (6)- истинное высказывание, r (3) – ложное высказывание.

Это же относится и к n – местным предикатам: если вместо всех предметных переменных х i , i= подставить их значения, то получим высказывание.

Наряду с образованием из предикатов высказываний в результате таких подстановок в логике предикатов рассматриваются еще две операции, которые превращают одноместный предикат в высказывание. Эти операции называются операциями квантификации (или просто квантификацией, или связыванием кванторами, или навешиванием кванторов). При этом рассматриваются, соответственно, два типа так называемых кванторов.

1.1 Квантор всеобщности.

Пусть Р(х) – предикат , определенный на множестве М. Под выражением понимают высказывание , истинное, когда Р(х) истинно для каждого элемента х из множества М, и ложное в противном случае. Это высказывание уже не зависит от х. Соответствующее ему словесное выражение звучит так: “Для всякого х Р(х) истинно ”.

Символ называют квантором всеобщности (общности). Переменную х в предикате Р(х) называют свободной (ей можно придавать различные значения из М), в высказывании же х называют связанной квантором всеобщности.

1.2 Квантор существования.

Пусть P(x) -предикат определенный на множестве М. Под выражением понимают высказывание , которое является истинным, если существует элемент , для которого P(x) истинно, и ложным – в противном случае. Это высказывание уже не зависит от x. Соответствующее ему словесное выражение звучит так: “Существует x, при котором P(x) истинно.” Символ называют квантором существования. В высказывании переменная x связана этим квантором (на нее навешен квантор).

Кванторные операции применяются и к многоместным предикатам. Пусть, например, на множестве М задан двухместный предикат P(x,y). Применение кванторной операции к предикату P(x,y) по переменной x ставит в соответствие двухместному предикату P(x,y) одноместный предикат (или одноместный предикат ), зависящий от переменной y и не зависящий от переменной x. К ним можно применить кванторные операции по переменной y, которые приведут уже к высказываниям следующих видов:

Рассмотрим предикат P(x) определенный на множестве M={a 1 ,…,a n }, содержащем конечное число элементов. Если предикат P(x) является тождественно - истинным, то истинными будут высказывания P(a 1),P(a 2),…,P(a n). При этом истинными будут высказывания и конъюнкция .

Если же хотя бы для одного элемента P(a k)окажется ложным, то ложными будут высказывание и конъюнкция . Следовательно, справедлива равносильность .

Численные кванторы.

В математике часто встречаются выражения вида “по меньшей мере n” (“хотя бы n”), “не более чем n”, “n и только n” (“ровно n”), где n – натуральное число.

Эти выражения, называемые численными кванторами , имеют чисто логический смысл; они могут быть заменены равнозначными выражениями, не содержащими числительных и состоящими только из логических терминов и знака или ~, означающего тождество (совпадение) объектов.

Пусть n=1. Предложение “По меньшей мере один объект обладает свойством P” имеет тот же смысл, что и предложение “Существует объект, обладающий свойством P”, т.е. (*)

Предложение “не более чем один объект обладает свойством P” равнозначно предложению “Если есть объекты, обладающие свойством P, то они совпадают”, т.е. (**) Предложение “один и только один объект обладает свойством P” равнозначно конъюнкции вышеуказанных предложений (*) и (**).

1.3 Отрицание предложений с кванторами.

Известно, что часто для отрицания некоторого предложения достаточно предпослать сказуемому этого предложения отрицательную частицу “не”. Например, отрицанием предложения “Река х впадает в Черное море.” является предложение “ Река х не впадает в Черное море ”. Годится ли этот прием для построения отрицаний предложений с кванторами? Рассмотрим пример.






Пример: В высказывании «7 - простое число», «7» -субъект, «простое число» - предикат. Это высказывание утверждает, что «7» обладает свойством «быть простым числом». Если в рассмотренном примере заменить конкретное число 7 переменной х из множества натуральных чисел, то получим высказывательную форму «х - простое число». При одних значениях х, (например, х = 13, х =17) эта форма дает истинные высказывания, а при других значениях х (например, х = 10, х = 18) эта форма дает ложные высказывания.








Примеры: Р(х) - «х - простое число» определен на множестве N, а множество истинности для него есть множество всех простых чисел. Предикат Q{x} - « sin х = 0 » определен на множестве R, а его множество истинности -Q. Предикат F(x) - «Диагонали параллелограмма перпендикулярны» определен на множестве всех параллелограммов, а его множеством истинности является множество всех ромбов.






Конъюнкцией двух предикатов Р(х) и Q(x) называется новый предикат Р(х) Q{x), который принимает значение «истина» при тех и только тех значениях х М, при которых каждый из предикатов принимает значение «истина», и принимает значение «ложь» во всех остальных случаях.




Дизъюнкцией двух предикатов Р(х) и Q(x) называется новый предикат Р(х)V Q(x), который принимает значение «ложь» при тех и только тех значениях х М, при которых каждый из предикатов при­нимает значение «ложь» и принимает значение «истина» во всех остальных случаях.


Отрицанием предиката Р(х) называется новый предикат, который принимает значение «истина» при всех значениях х М, при которых предикат Р(х) принимает значение «ложь», и принимает значение «ложь» при тех значениях х М, при которых предикат Р(х) принимает значение «истина». 2)v(y>1))((x" title="Задание 2 Изобразить на декартовой плоскости области истинности предикатов: х+у=1; х+3у=3; ((x>2)v(y>1))((x" class="link_thumb"> 16 Задание 2 Изобразить на декартовой плоскости области истинности предикатов: х+у=1; х+3у=3; ((x>2)v(y>1))((x 2)v(y>1))((x"> 2)v(y>1))((x"> 2)v(y>1))((x" title="Задание 2 Изобразить на декартовой плоскости области истинности предикатов: х+у=1; х+3у=3; ((x>2)v(y>1))((x"> title="Задание 2 Изобразить на декартовой плоскости области истинности предикатов: х+у=1; х+3у=3; ((x>2)v(y>1))((x">

Предикаты так же, как высказывания, могут принимать два значения: “истина” (1) и “ложь” (0), поэтому к ним применимы все операции логики высказываний, в результате чего из элементарных предикатов формируются сложные предикаты (как и в логике высказываний, где из элементарных высказываний формировались сложные, составные). Рассмотрим применение операций логики высказываний к предикатам на примерах одноместных предикатов. Эти операции в логике предикатов сохраняют тот же смысл, который был им присвоен в логике высказываний.

Пусть на некотором множестве M определены два предиката P(x) и Q(x).

Определение 1.

Конъюнкцией двух предикатов P(x) и Q(x) называется новый (сложный) предикат , который принимает значение “истина” при тех и только тех значениях , при которых каждый из предикатов принимает значение “истина”, и принимает значение “ложь” во всех остальных случаях.

Очевидно, что областью истинности предиката является общая часть области истинности предикатов P(x) и Q(x), т.е. пересечение .

Так, например, для предикатов P(x): “x – четное число” и Q(x): “x кратно 3” конъюнкцией является предикат “x – четное число и x кратно трем”, т.е. предикат “x делится на 6”.

Определение 2.

Дизъюнкцией двух предикатов P(x) и Q(x) называется новый предикат , который принимает значение “ложь” при тех и только тех значениях , при которых каждый из предикатов принимает значение “ложь”, и принимает значение “истина” во всех остальных случаях.

Ясно, что областью истинности предиката является объединение области истинности предикатов P(x) и Q(x), т.е. .

Определение 3.

Отрицанием предиката P(x) называется новый предикат или , который принимает значение “истина” при всех значениях , при которых предикат P(x) принимает значение “ложь”, и принимает значение “ложь” при тех значениях , при которых предикат P(x) принимает значение “истина”.

Очевидно, что , т.е. множество истинности предиката является дополнением к множеству I P .

Определение 4.

Импликацией предикатов P(x) и Q(x) называется новый предикат , который является ложным при тех и только тех значениях , при которых одновременно P(x) принимает значение “истина”, а Q(x) – значение “ложь”, и принимает значение “истина” во всех остальных случаях.

Поскольку при каждом фиксированном справедлива равносильность , то .

Определение 5.

Эквиваленцией предикатов P(x) и Q(x) называется новый предикат , который обращается в “истину” при всех тех и только тех , при которых P(x) и Q(x) обращаются оба в истинные или оба в ложные высказывания.

Для его множества истинности имеем:

Свободные и связанные переменные. Кванторы всеобщности и существования, их взаимосвязь.

Ква́нтор - общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих выcказывание. Чаще всего упоминают:
Квантор всеобщности (обозначение: , читается: «для всех…», «для каждого…» или «каждый…», «любой…», «для любого…»).
Квантор существования (обозначение: , читается: «существует…» или «найдётся…»).
В математической логике приписывание квантора к формуле называется связыванием или квантификацией.
В многозначных логиках также вводятся и другие кванторы, например, квантор плюральности (квантор Решера) (обозначается перевёрнутой M, читается «для большинства …»).
Содержание [убрать]
1 Примеры
2 Введение в понятие
3 Кванторы в математической логике
3.1 Свободные и связанные переменные
3.2 Операции над кванторами
4 История появления
5 Литература
6 Ссылки
7 Примечания
Примеры[править | править исходный текст]

Обозначим предикат «x делится на 5». Используя квантор общности, можно формально записать следующие высказывания (конечно, ложные):
любое натуральное число кратно 5;
каждое натуральное число кратно 5;
все натуральные числа кратны 5;
следующим образом:
.
Следующие (уже истинные) высказывания используют квантор существования:
существуют натуральные числа, кратные 5;
найдётся натуральное число, кратное 5;
хотя бы одно натуральное число кратно 5.
Их формальная запись:
.

Пусть на множестве простых чисел задан предикат: «Простое число нечётно». Подставим перед этим предикатом слово «любое». Получим ложное высказывание «любое простое число нечётно» (это высказывание ложно, так как 2 - простое чётное число).
Подставив перед данным предикатом слово «существует», получим истинное выcказывание «Существует простое число, являющееся нечётным» (например,).
Таким образом, превратить предикат в высказывание можно, поставив перед предикатом слова («все», «существует» и другие), называемые в логике кванторами.
Кванторы в математической логике[править | править исходный текст]

Высказывание означает, что область значений переменной включена в область истинности предиката.
(«При всех значениях утверждение верно»).
Высказывание означает, что область истинности предиката непуста.
(«Существует при котором утверждение верно»).

Свободные и связанные переменные[править | править исходный текст]
Множество свободных переменных* формулы F определяется рекурсивно, следующим образом:
Свободные переменные.
Все переменные, входящие в атомарную формулу, являются свободными переменными этой формулы,
свободные переменные формулы F являются свободными переменными формулы F,
переменные, являющиеся свободными для хотя бы одной из формул F или G, являются свободными переменными формулы (F Д G),
все свободные переменные формулы F кроме v являются свободными переменными формулы Kv F.
Замкнутая формула.
Формула без свободных переменных называется замкнутой формулой, или предложением.
Связанная переменная.
Переменная v связана в формуле F, если F содержит вхождение Kv, где K - квантор.
Связанное переименованию
Квантор всеобщности (обозначения: , ∀) - это условие, которое верно для всех обозначенных элементов, в отличие от квантора существования, где условие верно только для каких-то отдельных элементов из указанного множества. Формально говоря, это квантор, используемый для обозначения того, что множество целиком лежит в области истинности указанного предиката. Читается как: «для всех…», «для каждого…» или «каждый…», «любой…», «для любого…».
Квантор всеобщности - это попытка формализации обозначения того, что нечто (логическое выражение) истинно для всего, или для любой относящейся к делу сущности. Применяется в предикатной логике и символической логике.
В предикатной логике, квантор существования (экзистенциальный квантификатор) - это предикат свойства или отношения для, по крайней мере, одного элемента области определения. Он обозначается как символ логического оператора ∃ (произносится как «существует» или «для некоторого»). Квантор существования отличается от квантора всеобщности, который утверждает, что свойство или отношение выполняется для всех элементов области.

Рассмотрим выражение «х –– простое число». Подставляя вместо х числа 3, 4, получаем высказывания, причем в первом случае оно будет истинным, а во втором –– ложным. Таким образом, каждому натуральному числу соответствует значение «И» и «Л» в зависимости от того, является оно простым или нет.

Следовательно, выражение «х –– простое число» определяет функцию одной переменной (одноместную), заданную на множестве натуральных чисел со значениями в множестве {И, Л}.

Аналогично, подставляя в выражение «х Подобным образом выражение «х и у –– родители z» определяет функцию трех переменных (трехместную) на множестве людей со значениями в множестве {И, Л}. Выражение х1 + х2 + … + хn = 0 определяет функцию n переменных (n–местную), заданную на множестве действительных чисел со значениями в множестве {И, Л}:

Такие функции называются предикатами.

Определение 1. n–местным предикатом на множестве М называется n–местная функция, аргументы которой принимают значения из множества М, а область значений есть множество {И, Л}.

Короче, n–местным предикатом на множестве М называется функция типа Мп→{И, Л}.

Для обозначения предикатов используют либо большие латинские буквы, либо символы: А(х, у), В(х), Р(х1, х2,…, хn) и т.д. (к предикантным символам А, В, Р добавляют в скобках символы переменных, от которых зависят данные предикаты). При этом, например, выражение А(10, 8) служит для обозначения (постоянного) высказывания, которое получается, если переменным х, и у предиката А(х, у) придать соответственно значения 10 и 8. Некоторые предикаты записывают с помощью тех или иных знаков, имеющих в теории определенный смысл, например: х = у, х > у, х + у = z и т.д.

При n = 1 n–местный предикат называют унарным, при n = 2 –– бинарным, а при n = 3 –– тернарным.

Определение 2. Пусть Р(х1, х2,…, хn) –– n–местный предикат, определенный на множестве М. Множеством истинности этого предиката называется совокупность таких упорядоченных n–ок (х1, …, хn), для которых Р(х1, х2,…, хn) принимает значение И.

Определение 3. Два предиката Р(х1, …, хn) и Q(х1, …, хn), определенные на одном и том же множестве М, называются равносильными на множестве М, если они принимают одинаковые значения И или Л при любых значениях х1, …, хn из множества М.

Таким образом, два предиката Р(х1, …, хn) и Q(х1, …, хn) на множестве М называются равносильными на множестве М, если множества истинности этих предикатов совпадают.

Определение 4. Предикат Р(х1, …, хn), определенный на множестве М, называется тождественно–истинным (тождественно–ложным) на М, если при подстановке вместо х1, …, хn любых элементов из множества М он принимает значение И (Л), т.е. множество истинности этого предиката Мn (пустое).

Предикаты, как и высказывания, принимают значения И и Л, поэтому над ними можно производить логические операции, аналогичные операциям логики высказываний.

Пример. Пусть Р(х) и Q(х) –– два одноместных предиката, определенных на множестве М. Тогда Р(х) Ù Q(х) –– предикат на множестве М. Он является истинным для тех и только тех элементов из М, для которых оба предиката Р(х) и Q(х) истинны, т.е. множество истинности предиката Р(х) Ù Q(х) равно пересечению множеств истинности предикатов Р(х) и Q(х).

Аналогично определяется Р(х) U Q(х). Предикат Р(х) U Q(х) задан на том же множестве М и является истинным для тех и только тех элементов х из М, для которых истинен хотя бы один из предикатов Р(х) и Q(х), т.е. множество истинности предиката Р(х) U Q(х) равна объединению множеств истинности предикатов Р(х) и Q(х).

Предикат определен на множестве М и истинен для тех и только тех элементов х из М, для которых Р(х) ложен. Другими словами, множество истинности предиката –– дополнение в М множества истинности предиката Р(х).

Подобным образом вводятся предикаты Р(х) ? Q(х), Р(х) Û Q(х).

Операции логики высказываний над многоместными предикатами определяются аналогично. Необходимо только следить за тем, какие переменные обозначены одинаковыми буквами, а какие –– различными. Поясним это на примерах.

Пусть Р(х, у) и Q(х, у) –– два двухместных предиката, определенных на множестве М. Тогда Р(х, у) Ù Q(y, z) –– трехместный предикат на множестве М, он принимает значение И для тех и только тех упорядоченных троек (х, у, z) множества М, для которых Р(х, у) и Q(y, z) одновременно принимают значения И.

Отметим еще, что Р(х, у) Ù Q(х, у) –– двухместный, а Р(х, у) Ù Q(z, v) –– четырехместный предикаты, определенные на множестве М.

Если Р(х) и Q(х) –– два одноместных предиката, то не следует смешивать предикаты Р(х) Ù Q(х) и Р(х) Ù Q(у). Первый из них –– одноместный, а второй –– двухместный предикаты.

Рассмотрим ещё ряд операции в логике предикатов, которые называются кванторами, и делают логику предикатов более богатой, чем логика высказываний.

Определение 5. Пусть Р(х) –– одноместный предикат, определенный на множестве М. Символом обозначим высказывание, которое истинно, если Р(х) принимает значение И для любого элемента х множества М, и ложное в противоположном случае, т. е. –– истинное высказывание, если множество истинности предиката Р(х) совпадает со всем множеством М (Р(х) –– предикат, тождественно–истинный на множестве М); в противоположном случае –– ложное высказывание.

Часть в выражении называется квантором общности (всеобщности). Выражение читается «для любого х Р(х)». Символ –– перевернутая первая буква слова all (англ.), allе (нем.).

Пусть Р(х) –– предикат «х –– простое число», определенный на множестве натуральных чисел. Тогда высказывание (х –– простое число) ложно на множестве натуральных чисел. Это же высказывание (х –– простое число) истинно на множестве простых чисел.

Определение 6. Пусть Р(х) –– одноместный предикат, определенный на множестве М. Символом $ обозначим высказывание, которое истинно, когда в множестве М существует такой элемент х0, что Р(х0) = И, и ложно в противоположном случае, т. е. $ –– истинное высказывание, если множество истинности предиката Р(х) непустое; в противном случае $ –– ложное высказывание.

Выражение $ читается «существует х такое, что Р(х)», а часть $х в выражении $ называют квантором существования. Например, высказывание $х (х –– простое число) на множестве натуральных чисел истинно, высказывание $ на множестве действительных чисел ложно.

Символ $ –– перевернутая первая буква слова exist (англ.), existieren (нем.), exister (фр.).

Замечание 1. Применение квантора превращает одноместные предикаты в высказывания (не зависящие от х). Совершенно аналогично применяются кванторы к любому предикату с большим числом переменных. В результате применения квантора к n –– местному предикату (при n > 0) получается (n – 1) –– местный предикат.

Замечание 2. К одному и тому же предикату можно применять кванторы несколько раз. Например, применив к предикату Р(х, у) квантор существования по х, мы получим одноместный предикат $, к которому опять можем применить квантор существования или квантор общности по переменной у. В результате получим высказывание

$у($ или у($.

Скобки обычно опускают, получая при этом выражения

$у$ или у$.

Замечание 3. Одинаковые кванторы можно переставлять, получая при этом эквивалентные высказывания, т.е. истинные эквиваленции.