Теоретический материал. Производная функции, заданной неявно

Функция Z= f(х; у) называется неявной, если она задается уравнением F(x,y,z)=0 неразрешенным относительноZ. Найдем частные производныефункцииZзаданной неявно. Для этого подставив в уравнение вместоZфункцию f(х;у) получим тождествоF(x,y, f(х,у))=0. Частные производные поxи yфункции, тождественно равной нулю, также равны нулю.

F(x,y, f (х, у)) =
=0 (yсчитаем постоянным)

F(x,y, f (х, у)) =
=0 (xсчитаем постоянным)

Откуда
и

Пример : Найти частные производные функцииZзаданной уравнением
.

Здесь F(x,y,z)=
;
;
;
. По формулам приведенным выше имеем:

и

  1. Производная по направлению

Пусть функция двух переменных Z= f(x; у) задана в некоторой окрестности т. М (x,y). Рассмотрим некоторое направление, определяемое единичным вектором
, где
(см. рис.).

На прямой, проходящей по этому направлению через т. М возьмем т. М 1 (
) так, что длина
отрезкаMM 1 равна
. Приращение функцииf(M) определяется соотношением, где
связаны соотношениями. Предел отношенияпри
будет называться производной функции
в точке
по направлениюи обозначаться.

=

Если функция Zдифференцируема в точке
, то ее приращение в этой точке с учетом соотношений для
может быть записано в следующей форме.

поделив обе части на

и переходя к пределу при
получим формулу для производной функции Z= f(х; у) по направлению:

  1. Градиент

Рассмотрим функцию трех переменных
дифференцируемой в некоторой точке
.

Градиентом этой функции
в точке М называется вектор, координаты которого равны соответственно частным производным
в этой точке. Для обозначения градиента используют символ
.
=
.

.Градиент указывает направление наибыстрейшего роста функции в данной точке.

Поскольку единичный вектор имеет координаты (
), то производная по направлению для случая функции трех переменных записывается в виде, т.е.имеет формулу скалярного произведения векторови
. Перепишем последнюю формулу в следующем виде:

, где- угол между вектороми
. Поскольку
, то отсюда следует, что производная функции по направлению принимаетmaxзначение при=0, т.е. когда направление векторови
совпадают. При этом
.Т.е., на самом деле градиент функции характеризует направление и величину максимальной скорости возрастания этой функции в точке.

  1. Экстремум функции двух переменных

Понятия max,min, экстремума функции двух переменных аналогичны соответствующим понятиям функции одной переменной. Пусть функция Z= f(x; у) определена в некоторой областиDи т. М
принадлежит к этой области. Точка М
называется точкойmaxфункции Z= f(x; у), если существует такая δ-окрестность точки
, что для каждой точки из этой окрестности выполняется неравенство
. Аналогичным образом определяется и точкаmin, только знак неравенства при этом изменится
. Значение функции в точкеmax(min) называется максимумом (минимумом). Максимум и минимум функции называются экстремумами.

  1. Необходимые и достаточные условия экстремума

Теорема: (Необходимые условия экстремума). Если в точке М
дифференцируемая функция Z= f(x; у) имеет экстремум, то ее частные производные в этой точке равны нулю:
,
.

Доказательство: зафиксировав одну из переменныхxилиy, ревратим Z= f(x; у) в функцию одной переменной, для экстремума которой вышеописанные условия должны выполняться. Геометрически равенства
и
означают, что в точке экстремума функции Z= f(x; у), касательная плоскость к поверхности, изображающую функциюf(x,y)=Zпараллельна плоскостиOXY, т.к. уравнение касательной плоскости естьZ=Z 0. Точка, в которой частные производные первого порядка функции Z= f(x; у) равны нулю, т.е.
,
, называются стационарной точкой функции. Функция может иметь экстремум в точках, где хотя бы одна из частных производных не существует. НапримерZ=|-
| имеетmaxв точкеO(0,0), но не имеет в этой точке производных.

Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками. В критических точках функция может иметь экстремум, а может и не иметь. Равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума. Например, приZ=xyточкаO(0,0) является критической. Однако экстремума в ней функцияZ=xyне имеет. (Т.к. вIиIIIчетвертяхZ>0, а вIIиIV–Z<0). Таким образом для нахождения экстремумов функции в данной области необходимо подвергнуть каждую критическую точку функции дополнительному исследованию.

Теорема : (Достаточное условие экстремумов). Пусть в стационарной точке
и некоторой окрестности функция f(x; у) имеет непрерывные частные производные до 2 ого порядка включительно. Вычислим в точке
значения
,
и
. Обозначим


В случае если
, экстремум в точке
может быть, а может и не быть. Необходимы дополнительные исследования.

Производная функции, заданной неявно.
Производная параметрически заданной функции

В данной статье мы рассмотрим еще два типовых задания, которые часто встречаются в контрольных работах по высшей математике. Для того чтобы успешно освоить материал, необходимо уметь находить производные хотя бы на среднем уровне. Научиться находить производные практически с нуля можно на двух базовых уроках и Производная сложной функции . Если с навыками дифференцирования всё в порядке, тогда поехали.

Производная функции, заданной неявно

Или короче – производная неявной функции. Что такое неявная функция? Давайте сначала вспомним само определение функции одной переменной :

Функция одной переменной –это правило, по которому каждому значению независимой переменной соответствует одно и только одно значение функции .

Переменная называется независимой переменной или аргументом .
Переменная называется зависимой переменной или функцией .

До сих пор мы рассматривали функции, заданные в явном виде. Что это значит? Устроим разбор полётов на конкретных примерах.

Рассмотрим функцию

Мы видим, что слева у нас одинокий «игрек», а справа – только «иксы» . То есть, функция в явном виде выражена через независимую переменную .

Рассмотрим другую функцию:

Здесь переменные и расположены «вперемешку». Причем никакими способами невозможно выразить «игрек» только через «икс». Что это за способы? Перенос слагаемых из части в часть со сменой знака, вынесение за скобки, перекидывание множителей по правилу пропорции и др. Перепишите равенство и попробуйте выразить «игрек» в явном виде: . Можно крутить-вертеть уравнение часами, но у вас этого не получится.

Разрешите познакомить: – пример неявной функции .

В курсе математического анализа доказано, что неявная функция существует (однако не всегда), у неё есть график (точно так же, как и у «нормальной» функции). У неявной функции точно так же существует первая производная, вторая производная и т.д. Как говорится, все права секс-меньшинств соблюдены.

И на этом уроке мы научимся находить производную от функции, заданной неявно. Это не так сложно! Все правила дифференцирования, таблица производных элементарных функций остаются в силе. Разница в одном своеобразном моменте, который мы рассмотрим прямо сейчас.

Да, и сообщу хорошую новость – рассмотренные ниже задания выполняются по довольно жесткому и чёткому алгоритму без камня перед тремя дорожками.

Пример 1

1) На первом этапе навешиваем штрихи на обе части:

2) Используем правила линейности производной (первые два правила урока Как найти производную? Примеры решений ):

3) Непосредственное дифференцирование.
Как дифференцировать и совершенно понятно. Что делать там, где под штрихами есть «игреки»?

– просто до безобразия, производная от функции равна её производной : .

Как дифференцировать
Здесь у нас сложная функция . Почему? Вроде бы под синусом всего одна буква «игрек». Но, дело в том, что всего одна буква «игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (см. определение в начале урока). Таким образом, синус – внешняя функция, – внутренняя функция. Используем правило дифференцирования сложной функции :

Произведение дифференцируем по обычному правилу :

Обратите внимание, что – тоже сложная функция, любой «игрек с наворотами» – сложная функция :

Само оформление решения должно выглядеть примерно так:


Если есть скобки, то раскрываем их:

4) В левой части собираем слагаемые, в которых есть «игрек» со штрихом. В правую часть – переносим всё остальное:

5) В левой части выносим производную за скобки:

6) И по правилу пропорции сбрасываем эти скобки в знаменатель правой части:

Производная найдена. Готово.

Интересно отметить, что в неявном виде можно переписать любую функцию. Например, функцию можно переписать так: . И дифференцировать её по только что рассмотренному алгоритму. На самом деле фразы «функция, заданная в неявном виде» и «неявная функция» отличаются одним смысловым нюансом. Фраза «функция, заданная в неявном виде» более общая и корректная, – эта функция задана в неявном виде, но здесь можно выразить «игрек» и представить функцию в явном виде. Под словами же «неявная функция» чаще понимают «классическую» неявную функцию, когда «игрек» выразить нельзя.

Следует также отметить, что «неявное уравнение» может неявно задавать сразу две или даже бОльшее количество функций, так, например, уравнение окружности неявно задаёт функции , , которые определяют полуокружности.Но, в рамках данной статьи, мы не будем делать особого различия между терминами и нюансами, это была просто информация для общего развития.

Второй способ решения

Внимание! Со вторым способом можно ознакомиться только в том случае, если Вы умеете уверенно находить частные производные . Начинающие изучать математический анализ и чайники, пожалуйста, не читайте и пропустите этот пункт , иначе в голове будет полная каша.

Найдем производную неявной функции вторым способом.

Переносим все слагаемые в левую часть:

И рассматриваем функцию двух переменных:

Тогда нашу производную можно найти по формуле
Найдем частные производные:

Таким образом:

Второй способ решения позволяет выполнить проверку. Но оформлять им чистовой вариант задания нежелательно, поскольку частные производные осваивают позже, и студент, изучающий тему «Производная функции одной переменной», знать частные производные как бы еще не должен.

Рассмотрим еще несколько примеров.

Пример 2

Найти производную от функции, заданной неявно

Навешиваем штрихи на обе части:

Используем правила линейности:

Находим производные:

Раскрываем все скобки:

Переносим все слагаемые с в левую часть, остальные – в правую часть:

Окончательный ответ:

Пример 3

Найти производную от функции, заданной неявно

Полное решение и образец оформления в конце урока.

Не редкость, когда после дифференцирования возникают дроби. В таких случаях от дробей нужно избавляться. Рассмотрим еще два примера.

Пример 4

Найти производную от функции, заданной неявно

Заключаем обе части под штрихи и используем правило линейности:

Дифференцируем, используя правило дифференцирования сложной функции и правило дифференцирования частного :


Раскрываем скобки:

Теперь нам нужно избавиться от дроби. Это можно сделать и позже, но рациональнее сделать сразу же. В знаменателе дроби находится . Умножаем на . Если подробно, то выглядеть это будет так:

Иногда после дифференцирования появляется 2-3 дроби. Если бы у нас была еще одна дробь, например, , то операцию нужно было бы повторить – умножить каждое слагаемое каждой части на

В левой части выносим за скобку:

Окончательный ответ:

Пример 5

Найти производную от функции, заданной неявно

Это пример для самостоятельного решения. Единственное, в нём, перед тем как избавиться от дроби, предварительно нужно будет избавиться от трехэтажности самой дроби. Полное решение и ответ в конце урока.

Производная параметрически заданной функции

Не напрягаемся, в этом параграфе тоже всё достаточно просто. Можно записать общую формулу параметрически заданной функции, но, для того, чтобы было понятно, я сразу запишу конкретный пример. В параметрической форме функция задается двумя уравнениями: . Частенько уравнения записывают не под фигурными скобками, а последовательно: , .

Переменная называется параметром и может принимать значения от «минус бесконечности» до «плюс бесконечности». Рассмотрим, например, значение и подставим его в оба уравнения: . Или по человечески: «если икс равен четырем, то игрек равно единице». На координатной плоскости можно отметить точку , и эта точка будет соответствовать значению параметра . Аналогично можно найти точку для любого значения параметра «тэ». Как и для «обычной» функции, для американских индейцев параметрически заданной функции все права тоже соблюдены: можно построить график, найти производные и т.д. Кстати, если есть надобность построить график параметрически заданной функции, можете воспользоваться моей программой .

В простейших случаях есть возможность представить функцию в явном виде. Выразим из первого уравнения параметр: – и подставим его во второе уравнение: . В результате получена обыкновенная кубическая функция.

В более «тяжелых» случаях такой фокус не прокатывает. Но это не беда, потому что для нахождения производной параметрической функции существует формула:

Находим производную от «игрека по переменной тэ»:

Все правила дифференцирования и таблица производных справедливы, естественно, и для буквы , таким образом, какой-то новизны в самом процессе нахождения производных нет . Просто мысленно замените в таблице все «иксы» на букву «тэ».

Находим производную от «икса по переменной тэ»:

Теперь только осталось подставить найденные производные в нашу формулу:

Готово. Производная, как и сама функция, тоже зависит от параметра .

Что касается обозначений, то в формуле вместо записи можно было просто записать без подстрочного индекса, поскольку это «обычная» производная «по икс». Но в литературе всегда встречается вариант , поэтому я не буду отклоняться от стандарта.

Пример 6

Используем формулу

В данном случае:

Таким образом:

Особенностью нахождения производной параметрической функции является тот факт, что на каждом шаге результат выгодно максимально упрощать . Так, в рассмотренном примере при нахождении я раскрыл скобки под корнем (хотя мог этого и не делать). Велик шанс, что при подстановке и в формулу многие вещи хорошо сократятся. Хотя встречаются, конечно, примеры и с корявыми ответами.

Пример 7

Найти производную от функции, заданной параметрически

Это пример для самостоятельного решения.

В статье Простейшие типовые задачи с производной мы рассматривали примеры, в которых требовалось найти вторую производную функции. Для параметрически заданной функции тоже можно найти вторую производную, и находится она по следующей формуле: . Совершенно очевидно, что для того чтобы найти вторую производную, нужно сначала найти первую производную.

Пример 8

Найти первую и вторую производные от функции, заданной параметрически

Сначала найдем первую производную.
Используем формулу

В данном случае:

Производные высших порядков находятся последовательным дифференцированием формулы (1).

Пример. Найти и , если (x ²+y ²)³-3(x ²+y ²)+1=0.

Решение. Обозначая левую часть данного уравнения через f (х,y) найдем частные производные

f"x(x,y)=3(x²+y²)²∙2x-3∙2x=6x[(x²+y²)-1],

f"y(x,y)=3(x²+y²)²∙2y-3∙2y=6y[(x²+y²)-1].

Отсюда, применяя формулу (1), получим:

.

Чтобы найти вторую производную, продифференцируем по х найденную первую производную, учитывай при этом, что у есть функция х:

.

2°. Случай нескольких независимых переменных . Аналогично, если уравнение F(х, у, z)=0 , где F(х, у, z ) - дифференцируемая функция переменных х, у и z , определяет z как функцию независимых переменных х и у и Fz(x, у, z)≠ 0, то частные производные этой неявно заданной функции, вообще говоря, могут быть найдены по формулам

.

Другой способ нахождения производных функции z следующий: дифференцируя уравнение F(х, у, z) = 0 , получим:

.

Отсюда можно определить dz, а следовательно, и .

Пример. Найти и , если x ² - 2 y ²+3 z ² - yz + y =0.

1-й способ. Обозначая левую часть данного уравнения через F(х, у, z) , найдем частные производные F"x(x,y,z)=2x, F"y(x,y,z)=-4y-z+1, F"z(x,y,z)=6z-y .

Применив формулы (2), получим:

2-й способ. Дифференцируя данное уравнение, получим:

dx -4 y dy +6 z dz - y dz - z dy + dy =0

Отсюда определяем dz , т. е. полный дифференциал неявной функции:

.

Сравнивая с формулой , видим, что

.

3°. Система неявных функций . Если система двух уравнений

определяет u и v как функции переменных х и у и якобиан

,

то дифференциалы этих функций (а следовательно, и их частные производные) могут быть найдены из системы уравнений

Пример: Уравнения u+v=x+y, xu+yv=1 определяют u и v как функции х и у ; найти .

Решение. 1-й способ. Дифференцируя оба уравнения по х, получим:

.

Аналогичным образом найдем:

.

2-й способ. Дифференцированием находим два уравнения, связывающие дифференциалы всех четырех переменных: du + dv = dx + dy , x du + u dx + y dv + v dy =0.

Решив эту систему относительно дифференциалов du и dv , получим:

4°. Параметрическое задание функции . Если функция г переменных х и у задана параметрически уравнениями x=x(u,v), y=y(u,v), z=z(u,v) и

,

то дифференциал этой функции может быть найден из системы уравнений

Зная дифференциал dz=p dx+q dy , находим частные производные и .

Пример. Функция z аргументов х и у задана уравнениями x=u+v, y=u²+v², z=u²+v² (u≠v ).

Найти и .

Решение. 1-й способ. Дифференцированием находим три уравнения, связывающие дифференциалы всех пяти переменных:

Из первых двух уравнений определим du и dv :

.

Подставим в третье уравнение найденные значения du и dv :

.

2-й способ. Из третьего данного уравнения можно найти:

Продифференцируем первые два уравнения сначала по х, затем по у :

Из первой системы найдем: .

Из второй системы найдем: .

Подставляя выражения и в формулу (5), получим:

Замена переменных

При замене переменных в дифференциальных выражениях входящие в них производные следует выразить через другие производные по правилам дифференцирования сложной функции.

1°. Замена переменных в выражениях, содержащих обыкновенные производные.

,

полагая .

у по х через производные от у по t . Имеем:

,

.

Подставляя найденные выражения производных в данное уравнение и заменяя х через , получим:

Пример. Преобразовать уравнение

,

приняв за аргумент у , а за функцию х.

Решение. Выразим производные от у по х через производные от х по у.

.

Подставив эти выражения производных в данное уравнение, будем иметь:

,

или, окончательно,

.

Пример . Преобразовать уравнение

перейдя к полярным координатам

x=r cos φ, y=r cos φ.

Решение. Рассматривая r как функцию φ , из формул (1) получим:

dх = соsφ dr – r sinφ d φ, dy=sinφ+r cosφ dφ,

Очень часто при решении практических задач (например, в высшей геодезии или аналитической фотограмметрии) появляются сложные функции нескольких переменных, т. е. аргументы x, y, z одной функцииf (x,y,z) ) сами являются функциями от новых переменныхU, V, W ).

Так, например, бывает при переходе от неподвижной системы координат Oxyz в подвижную системуO 0 UVW и обратно. При этом важно знать все частные производные по "неподвижным" - "старым" и "подвижным" - "новым" переменным, так как эти частные производные обычно характеризуют положение объекта в этих системах координат, и, в частности, влияют на соответствие аэрофотоснимков реальному объекту. В таких случаях применяются следующие формулы:

То есть задана сложная функцияT трех "новых" переменныхU, V, W посредством трёх "старых" переменныхx, y, z, тогда:

Замечание. Возможны вариации в количестве переменных. Например: если

В частности, еслиz = f(xy), y = y(x) , то получаем так называемую формулу "полной производной":

Эта же формула "полной производной" в случае:

примет вид:

Возможны и иные вариации формул (1.27) - (1.32).

Замечание: формула "полной производной" используется в курсе физики, раздел "Гидродинамика" при выводе основополагающей системы уравнений движения жидкости.

Пример 1.10. Дано:

Согласно (1.31):

§7 Частные производные неявно заданной функции нескольких переменных

Как известно, неявно заданная функция одной переменной определяется так: функция у независимой переменной x называется неявной, если она задана уравнением, не разрешенным относительноy :

Пример 1.11.

Уравнение

неявно задаёт две функции:

А уравнение

не задаёт никакой функции.

Теорема 1.2 (существования неявной функции).

Пусть функция z =f(х,у) и ее частные производныеf" x иf" y определены и непрерывны в некоторой окрестностиU M0 точкиM 0 (x 0 y 0 ) . Кроме того,f(x 0 ,y 0 )=0 иf"(x 0 ,y 0 )≠0 , тогда уравнение (1.33) определяет в окрестностиU M0 неявную функциюy= y(x) , непрерывную и дифференцируемую в некотором интервалеD с центром в точке x 0 , причемy(x 0 )=y 0 .

Без доказательства.

Из теоремы 1.2 следует, что на этом интервале D :

то- есть имеет место тождество по

где "полная" производная находится согласно (1.31)

То есть (1.35) дает формулу нахождения производной неявно заданной функции одной переменной x .

Аналогично определяется и неявная функция двух и более переменных.

Например, если в некоторой области V пространстваOxyz выполняется уравнение:

то при некоторых условиях на функцию F оно неявно задаёт функцию

При этом по аналогии с (1.35) ее частные производные находятся так:

Пример 1.12. Считая, что уравнение

неявно задаёт функцию

найти z" x , z" y .

поэтому согласно (1.37) получаем ответ.

§8 Частные производные второго и более высоких порядков

Определение 1.9 Частные производные второго порядка функции z=z(x,y) определяются так:

Их оказалось четыре. Причем, при некоторых условиях на функции z(x,y) выполняется равенство:

Замечание. Частные производные второго порядка могут обозначаться и так:

Определение 1.10 Частных производных третьего порядка - восемь (2 3).

Формула производной функции, заданной неявно. Доказательство и примеры применения этой формулы. Примеры вычисления производных первого, второго и третьего порядка.

Содержание

Производная первого порядка

Пусть функция задана неявным образом с помощью уравнения
(1) .
И пусть это уравнение, при некотором значении , имеет единственное решение . Пусть функция является дифференцируемой функцией в точке , причем
.
Тогда, при этом значении , существует производная , которая определяется по формуле:
(2) .

Доказательство

Для доказательства рассмотрим функцию как сложную функцию от переменной :
.
Применим правило дифференцирования сложной функции и найдем производную по переменной от левой и правой частей уравнения
(3) :
.
Поскольку производная от постоянной равна нулю и , то
(4) ;
.

Формула доказана.

Производные высших порядков

Перепишем уравнение (4), используя другие обозначения:
(4) .
При этом и являются сложными функциями от переменной :
;
.
Зависимость определяет уравнение (1):
(1) .

Находим производную по переменной от левой и правой части уравнения (4).
По формуле производной сложной функции имеем:
;
.
По формуле производной произведения :

.
По формуле производной суммы :


.

Поскольку производная правой части уравнения (4) равна нулю, то
(5) .
Подставив сюда производную , получим значение производной второго порядка в неявном виде.

Дифференцируя, аналогичным образом, уравнение (5), мы получим уравнение, содержащее производную третьего порядка :
.
Подставив сюда найденные значения производных первого и второго порядков, найдем значение производной третьего порядка.

Продолжая дифференцирование, можно найти производную любого порядка.

Примеры

Пример 1

Найдите производную первого порядка от функции, заданной неявно уравнением:
(П1) .

Решение по формуле 2

Находим производную по формуле (2):
(2) .

Перенесем все переменные в левую часть, чтобы уравнение приняло вид .
.
Отсюда .

Находим производную по , считая постоянной.
;
;
;
.

Находим производную по переменной , считая переменную постоянной.
;
;
;
.

По формуле (2) находим:
.

Мы можем упростить результат если заметим, что согласно исходному уравнению (П.1), . Подставим :
.
Умножим числитель и знаменатель на :
.

Решение вторым способом

Решим этот пример вторым способом. Для этого найдем производную по переменной левой и правой частей исходного уравнения (П1).

Применяем :
.
Применяем формулу производной дроби :
;
.
Применяем формулу производной сложной функции :
.
Дифференцируем исходное уравнение (П1).
(П1) ;
;
.
Умножаем на и группируем члены.
;
.

Подставим (из уравнения (П1)):
.
Умножим на :
.

Пример 2

Найти производную второго порядка от функции , заданной неявно с помощью уравнения:
(П2.1) .

Дифференцируем исходное уравнение, по переменной , считая что является функцией от :
;
.
Применяем формулу производной сложной функции.
.

Дифференцируем исходное уравнение (П2.1):
;
.
Из исходного уравнения (П2.1) следует, что . Подставим :
.
Раскрываем скобки и группируем члены:
;
(П2.2) .
Находим производную первого порядка:
(П2.3) .

Чтобы найти производную второго порядка, дифференцируем уравнение (П2.2).
;
;
;
.
Подставим выражение производной первого порядка (П2.3):
.
Умножим на :

;
.
Отсюда находим производную второго порядка.

Пример 3

Найти производную третьего порядка при от функции , заданной неявно с помощью уравнения:
(П3.1) .

Дифференцируем исходное уравнение по переменной считая, что является функцией от .
;
;
;
;
;
;
(П3.2) ;

Дифференцируем уравнение (П3.2) по переменной .
;
;
;
;
;
(П3.3) .

Дифференцируем уравнение (П3.3).
;
;
;
;
;
(П3.4) .

Из уравнений (П3.2), (П3.3) и (П3.4) находим значения производных при .
;
;
.